4 Amplitude Modulation (AM)

4.1 Introduction .. 3

4.2 Double-Sideband Suppressed Carrier AM (DSB-SC) 6
 4.2.1 Modulation .. 6
 4.2.2 Demodulation 8
 Pilot Carrier .. 11
 Phase Locked Loop 14

4.3 Double-Sideband Large Carrier AM 15
 4.3.1 Modulation .. 15
 4.3.2 Carrier and Sideband Power in AM 18
 4.3.3 Demodulation 19

4.4 Quadrature AM (IQ) .. 20

4.5 Single-Sideband AM (SSB) 22
 4.5.1 Modulation .. 23
 4.5.2 Demodulation 26

4.6 Vestigial-Sideband AM (VSB) 29
 4.6.1 Video Transmission in Commercial TV Systems 31
4.7 Summary
4.1 Introduction

Modulation: Process by which a property or a parameter of a signal is varied in proportion to a second signal.

Amplitude Modulation: The amplitude of a sinusoidal signal with fixed frequency and phase is varied in proportion to a given signal.

Purpose:
- Adaptation of the information signal to the transmission channel
- Shift of the information signal to an assigned frequency band

- Efficient antenna design: size is at least $1/4^{th}$ of signal wavelength
 \Rightarrow antennas for lowpass signals would be too large ($f = 3$ kHz, $\lambda = 100,000$ m).

\[j \Phi(\omega) \]
\[jF(\omega) \]
Simultaneous transmission of several information signals (e.g. radio broadcasting)
4.2 Double-Sideband Suppressed Carrier AM (DSB-SC)

4.2.1 Modulation

Generation of DSB-SC modulated signal:

\[\phi(t) = f(t) \cos(\omega_c t) \]

\(\phi(t) \): modulated transmit signal
\(f(t) \): modulating signal, real valued
\(\cos(\omega_c t) \): carrier signal, \(\omega_c \): carrier frequency in rad/sec

Spectrum of DSB-SC modulated signal:

\[\Phi(\omega) = \frac{1}{2}F(\omega - \omega_c) + \frac{1}{2}F(\omega + \omega_c) \]
• Carrier frequency has to be larger than twice the bandwidth \(\omega \geq 2W \).

• Bandwidth of the modulated signal \(\phi(t) \) is twice as large as the bandwidth of the modulating signal \(f(t) \).

• No separate carrier is present in \(\phi(t) \).

• Upper sideband: spectral content for positive frequencies above \(\omega_c \).
 Lower sideband: spectral content for positive frequencies below \(\omega_c \).

• Information in upper and lower sideband are redundant since \(\Phi(\omega_c + \omega) = \Phi^*(\omega_c - \omega) \), or equivalently: \(|\Phi(\omega_c + \omega)| = |\Phi(\omega_c - \omega)| \) and \(\angle \Phi(\omega_c + \omega) = -\angle \Phi(\omega_c - \omega) \)
4.2.2 Demodulation

\[\phi(t) = f(t) \cos(\omega_c t) \]

Before lowpass filtering:

\[\phi(t) \, 2 \cos(\omega_c t) = 2f(t) \cos^2(\omega_c t) = f(t) (1 + \cos(2\omega_c t)) \]

\[F\{\phi(t) \, 2 \cos(\omega_c t)\} = F(\omega) + \frac{1}{2}F(\omega - 2\omega_c) + \frac{1}{2}F(\omega + 2\omega_c) \]

After lowpass filtering:

\[\hat{F}(\omega) = F(\omega) \]

The oscillators at the transmitter and receiver have to be synchronized, i.e. the carrier frequency \(\omega_c \) as well as the phase must be identical (coherent demodulation).
Influence of Frequency and Phase Offset:
The oscillator at the receiver has a constant phase offset of θ_0 as well as a slightly different carrier frequency of $\omega_c + \Delta \omega$ when compared to the one at the transmitter.

Before lowpass filtering:
\[
\phi(t) 2 \cos((\omega_c + \Delta \omega) t + \theta_0) = 2f(t) \cos(\omega_c t) \cos((\omega_c + \Delta \omega) t + \theta_0)
\]
\[
= f(t) \cos((2\omega_c + \Delta \omega) t + \theta_0) + f(t) \cos(\Delta \omega t + \theta_0)
\]

After lowpass filtering:
\[
\hat{f}(t) = f(t) \cos(\Delta \omega t + \theta_0)
\]
\[
= \frac{1}{2} f(t) \exp(j\Delta \omega t) \exp(j\theta) + \frac{1}{2} f(t) \exp(-j\Delta \omega t) \exp(-j\theta)
\]
\[
\hat{F}(\omega) = \frac{1}{2} \exp(j\theta) F(\omega - \Delta \omega) + \frac{1}{2} \exp(-j\theta) F(\omega + \Delta \omega)
\]
Phase error only (i.e. $\Delta \omega = 0$):

$$\hat{f}(t) = f(t) \cos(\theta_0) \quad \circ \bullet \quad \hat{F}(\omega) = F(\omega) \cos(\theta_0)$$

\Rightarrow The recovered signal is scaled by a constant. For $\theta_0 = \pm 90^\circ$ we have $\hat{f}(t) = 0$.

Frequency error only (i.e. $\theta_0 = 0$):

$$\hat{f}(t) = f(t) \cos(\Delta \omega t) \quad \circ \bullet \quad \hat{F}(\omega) = \frac{1}{2} F(\omega - \Delta \omega) + \frac{1}{2} F(\omega + \Delta \omega)$$

\Rightarrow The recovered signal is still modulated by a cosine signal of low frequency $\Delta \omega$.

Dr. Tanja Karp 10
Pilot Carrier

- send a sinusoidal tone whose frequency and phase is proportional to ω_c

- sent outside the passband of the modulate signal

- Receiver detects the tone, translates to correct frequency (doubling) and demodulates
Example - Commercial Stereo FM Stations

Transmitter

- need to transmit left(L) and right(R) as well as (L+R) for monophonic
- (L+R) occupies $0 - 15\, kHz$
- so does (L-R), so shift up using DSB-SC with $\omega_c = 38\, kHz$
- place pilot tone at 19kHz
Receiver

- narrow bandpass filter at 19kHz and then double to 38kHz
- after demodulation using pilot tone, we have

\[
\begin{align*}
\text{Left channel} &= (L + R) + (L - R) = 2L \\
\text{Right channel} &= (L + R) - (L - R) = 2R
\end{align*}
\]
Phase Locked Loop (PLL)

- Pilot Tone Problem - BP filters drift in tuning, bad at rejecting noise
- Solution: Phase Locked Loop (PLL)

- Operation when Voltage Controlled Oscillator (VCO) frequency (ω_{VCO}) is close to ω_c
 - low-frequency component of output is proportional to magnitude and sign of phase difference
 - this voltage adjusts ω_{VCO} to keep phase difference a minimum

- Bandwidth of PLL determined by LPF
 - Small BW \Rightarrow good noise rejection but receiver may never lock
 - Large BW \Rightarrow good lock but bad noise rejection
4.3 Double-Sideband Large Carrier AM

4.3.1 Modulation

• Reduces complexity of receiver

• Since this type of AM is used in commercial broadcast stations, usually termed AM

• Similar to DSB-SC, except that we incorporate the carrier
 – carrier must be larger than the rest of the signal
 – ruins low-frequency response of the system, so must not require frequency response down to 0.

\[\phi_{AM} = f(t) \cos(\omega_c t) + A \cos(\omega_c t) \]

\[\Phi_{AM}(\omega) = \frac{1}{2} F(\omega + \omega_c) + \frac{1}{2} F(\omega - \omega_c) + \pi A \delta(\omega + \omega_c) + \pi A \delta(\omega - \omega_c) \]
• if A is large enough signal recovery is done with envelope detection

$$[A + f(t)] \geq 0 \text{ for all } t$$
- Let $f(t) = \cos(\omega_m t)$, we define m to control the amount of modulation

$$m = \frac{\text{peak DSB-SC amplitude}}{\text{peak carrier amplitude}}$$

$$\phi(t) = A \cos(\omega_c t) + mA \cos(\omega_m t) \cos(\omega_c t)$$

$$= A[1 + m \cos(\omega_m t)] \cos(\omega_c t)$$

- percentage of modulation for DSB-LC signal with sinusoidal modulation

$$\%_{\text{mod}} = \frac{A(1 + m) - A(1 - m)}{A(1 + m) + A(1 - m)} \times 100\% = m \times 100\%$$

- we call m the modulation index

- in order to detect the signal with no distortion we require $m \leq 1$
4.3.2 Carrier and Sideband Power in AM

- carrier provides no information so it is just wasted power
- for an AM signal $\phi_{AM}(t) = A \cos(\omega_c t) + f(t) \cos(\omega_c t)$ the power is
 \[
 \phi_{AM}^2(t) = A^2 \cos^2(\omega_c t) + f^2(t) \cos^2(\omega_c t) + 2Af(t) \cos^2(\omega_c t)
 \]
 \[
 = A^2 \cos^2(\omega_c t) + f^2(t) \cos^2(\omega_c t)
 \]
 \[
 = A^2/2 + f^2(t)/2
 \]

- so we can express the total power as,
 \[
 P_t = P_c + P_s = \frac{1}{2}A^2 + \frac{1}{2}f^2(t)
 \]
 so that the fraction of the total power contained in the sidebands is
 \[
 \mu = \frac{P_s}{P_t} = \frac{f^2(t)}{A^2 + f^2(t)}
 \]
• so when \(f(t) = \cos(\omega_m t) \) we get

\[
\phi_{AM}^2(t) = \frac{1}{2}A^2 + \left(\frac{1}{2}\right)\frac{1}{2}m^2 A^2
\]

\[
\mu = \frac{m^2}{2 + m^2}
\]

• so for best case, i.e., \(m = 1 \), 67% of the total power is wasted with the carrier

4.3.3 Demodulation

• the price we pay for wasted power is a tradeoff for simple receiver design

• receiver is simply an envelope detector

![Diagram of envelope detector](image)
4.4 Quadrature AM (IQ)

- for real signal $f(t)$, $F(\omega) = F^*(-\omega)$
- using this symmetry we can transmit two signals that form a complex signal with same bandwidth
- we use two sinusoidal carriers, each exactly 90° out of phase

 remember, $e^{j\omega t} = \cos(\omega t) + j \sin(\omega t)$
- transmitted over the same frequency band,
\[
\phi(t) = f(t) \cos(\omega_c t) + g(t) \sin(\omega_c t)
\]
\[
\phi(t) \cdot \cos(\omega_c t) = f(t) \cos^2(\omega_c t) + g(t) \sin(\omega_c t) \cos(\omega_c t)
\]
\[
= \frac{1}{2} f(t) + \frac{1}{2} f(t) \cos(2\omega_c t) + \frac{1}{2} f(t) \sin(2\omega_c t)
\]
\[
\phi(t) \cdot \sin(\omega_c t) = f(t) \cos(\omega_c t) \sin(\omega_c t) + g(t) \sin^2(\omega_c t)
\]
\[
= \frac{1}{2} f(t) \sin(2\omega_c t) + \frac{1}{2} g(t) - \frac{1}{2} \cos(2\omega_c t)
\]
4.5 Single-Sideband AM (SSB)

- remember for real $f(t)$, $F(-\omega) = F^*(\omega)$
- a single sideband contains entire information of the signal
- let’s just transmit the upper/lower sideband.
4.5.1 Modulation

- one way is to generate DSB signal, and then suppress one sideband with filtering
- hard to do in practice, can’t get ideal filters
- assume no low-frequency information \(\Rightarrow\) no components around \(\omega_c\)
- use heterodyning (frequency shifting), only need to design on sideband filter
- another way is the use of phasing
- assume a complex, single-frequency signal, \(f(t) = e^{j\omega_m t}\) with carrier signal \(f(t) = e^{j\omega_c t}\)
- multiplying we get \(\phi(t) = f(t) e^{j\omega_c t} = e^{j\omega_m t} e^{j\omega_c t}\)
- using the frequency-translation property of the Fourier Transform, our spectrum becomes

\[
\Phi(\omega) = 2\pi \delta(\omega - (\omega_c + \omega_m))
\]
• to make the signal $\phi(t)$ realizable, we take the $\mathbb{R}\{\phi(t)\}$

\[
\mathbb{R}\{\phi(t)\} = \mathbb{R}\{e^{j\omega_m t}\} \mathbb{R}\{e^{j\omega_c t}\} - \mathbb{I}\{e^{j\omega_m t}\} \mathbb{I}\{e^{j\omega_c t}\}
\]

\[
= \cos(\omega_m t) \cos(\omega_c t) - \sin(\omega_m t) \sin(\omega_c t)
\]

• So the upper side band is

\[
\phi_{SSB^+}(t) = \cos(\omega_m t) \cos(\omega_c t) - \sin(\omega_m t) \sin(\omega_c t)
\]
• likewise the lower sideband is
\[\phi_{SSB_-}(t) = \cos(\omega_m t) \cos(\omega_c t) + \sin(\omega_m t) \sin(\omega_c t) \]

• in general we write,
\[\phi_{SSB_\mp}(t) = f(t) \cos(\omega_c t) \pm \hat{f}(t) \sin(\omega_c t) \]

where \(\hat{f}(t) \) is \(f(t) \) shifted by 90°
4.5.2 Demodulation

Synchronous detection, analogous to DSB-SC

Influence of Frequency and Phase Offset:
The oscillator at the receiver has a constant phase offset of θ as well as a slightly different carrier frequency offset of $\Delta \omega$ giving

$$\phi_d(t) = \cos[(\omega_c + \Delta \omega)t + \theta]$$
Before lowpass filtering:

\[
\phi_{SSB \mp}(t) \phi_d(t) = [f(t) \cos(\omega_c t) \pm \hat{f}(t) \sin(\omega_c t)] \cos[(\omega_c + \Delta \omega)t + \theta]
\]

\[
= \frac{1}{2} f(t) \{\cos[(\Delta \omega)t + \theta] + \cos[(2\omega_c + \Delta \omega)t + \theta]\}
\]

\[
= \pm \frac{1}{2} \hat{f}(t) \{\sin[(\Delta \omega)t + \theta] - \sin[(2\omega_c + \Delta \omega)t + \theta]\}
\]

After lowpass filtering:

\[
e_o(t) = \frac{1}{2} f(t) \cos[(\Delta \omega)t + \theta] \mp \frac{1}{2} \hat{f}(t) \sin[(\Delta \omega)t + \theta]
\]

Phase error only (i.e. \(\Delta \omega = 0\)):

\[
e_o(t) = \frac{1}{2} [f(t) \cos \theta \mp \hat{f}(t) \sin \theta]
\]

To understand this better we re-write the above equation as

\[
e_o(t) = \frac{1}{2} \Re\{[f(t) \pm j\hat{f}(t)]e^{j\theta}\}
\]

⇒ So phase error in the receiver oscillator results in phase distortion.
Frequency error only (i.e. $\theta = 0$):

$$e_0(t) = \frac{1}{2} [f(t) \cos(\Delta \omega t) \mp \hat{f}(t) \sin(\Delta \omega t)]$$

or

$$e_o(t) = \frac{1}{2} \Re\{[f(t) \pm j\hat{f}(t)] e^{j\Delta \omega t}\}$$

⇒ Demodulated signal contains spectral shifts and phase distortions.
4.6 Vestigial-Sideband AM (VSB)

- compromise between DSB and SSB.
- partial suppression of one sideband

\[
\Phi_{VSB}(\omega) = \frac{1}{2}F(\omega - \omega_c) + \frac{1}{2}F(\omega + \omega_c)\] \(H_{V}(\omega)\)

- after synchronous detection we have

\[
E_o(\omega) = \frac{1}{4}F(\omega)H_{V}(\omega + \omega_c) + \frac{1}{4}F(\omega)H_{V}(\omega - \omega_c)
\]

\[
= \frac{1}{4}F(\omega)[H_{V}(\omega + \omega_c) + H_{V}(\omega - \omega_c)]
\]
thus for reproduction of $f(t)$ we require

$$[H_V(\omega - \omega_c) + H_V(\omega + \omega_c)]_{LP} = \text{constant}$$

- magnitude can be satisfied, but phase requirements are hard to satisfy
- use when phase is not important
4.6.1 Video Transmission in Commercial TV Systems

- video requires 4MHz bandwidth to transmit
- so DSB would require 8MHz per channel
- use VSB to decrease the needed bandwidth to 5MHz
4.7 Summary

Double Sideband-Suppressed Carrier (DSB-SC)

- spectrum at ω_c is a copy of baseband spectrum with scaling factor of 1/2
- information is sidebands is redundant
- for coherent detection, we must have same frequency and phase of carrier signal
- detection can be done with pilot tone, PLL
Double Sideband-Large Carrier (DSB-LC)

- same as DSB-SC, with an addition of a carrier term
- detection is a simple envelope detector
- wastes, at best case, 67% of the power in the carrier term
- frequency response at low-frequencies are ruined

Quadrature Amplitude Modulation (QAM)

- efficient utilization of bandwidth
• forms a complex signal with two sinusoidal carriers of same frequency, 90° out of phase

Single Sideband Modulation (SSB)

- suppress either upper or lower sideband for more efficient bandwidth utilization
- generated by filtering DSB-SC
• can also use phasing to cancel the “negative” frequencies
• can use either suppressed carrier, pilot tone, or large carrier AM also

Vestigial Sideband (VSB)

• compromises DSB and SSB
• transmitter and receiver filters must be complementary, i.e., they must add to a constant at baseband
• phase must not be important